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Abstract 

Air Force Weather Agency’s (AFWA) Ensemble Prediction Systems (EPS), 

Global Ensemble Prediction System (GEPS), 20km Mesoscale Ensemble Prediction 

System (MEPS20) and 4km Mesoscale Prediction System (MEPS4), were evaluated from 

April to October 2013 for 10 locations around the world to determine how accurately 

forecast probabilities for wind and precipitation thresholds and lightning occurrence 

match observed frequencies using Aerodrome Routine Meteorological Reports 

(METARs) and Aerodrome Special Meteorological Reports (SPECIs).  Reliability 

diagrams were created for each forecast hour detailing the Brier skill score (BSS) to 

depict EPS performance compared to climatology for each site and score composition 

through reliability, resolution and uncertainty.  To illustrate how the BSS changed, the 

score and its composition were plotted for all forecast hours.  This study showed that all 

three EPS suffered from a lightning overforecasting bias at all locations and most forecast 

hours.  For wind speeds, it was clear that decreased model grid spacing allowed better 

resolution of terrain features, producing a better BSS.  Likewise, precipitation was better 

resolved with increased horizontal resolution as explicit resolution of precipitation 

processes outperformed cumulus parameterization schemes.  
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VALIDATION OF THE AIR FORCE WEATHER AGENCY ENSEMBLE 

PREDICTION SYSTEMS 

I.  Introduction 

1.1 Motivation 

During November 2012, the Director of Air Force Weather was briefed on the 

current status of the Air Force Weather Agency’s (AFWA) ensemble weather forecasting 

operations as well as a way forward to increasingly incorporate these stochastic outputs 

into daily Air Force and other Department of Defense (DoD) operations.  The plan 

included AFWA providing timely and operationally significant ensemble modeling data 

to users.  The plan also included a means for Air Force weather personnel to interpret the 

model output by incorporating quantifiable performance metrics of their ensemble 

prediction systems (EPS).   

While ensemble weather forecasting has expanded over the past two decades, 

there still remains a disconnect between the research community and weather forecasters 

within the DoD.  This disconnect arises from a lack of understanding among the research 

community of what information needs to be communicated to weather forecasters where 

as forecasters need to understand how EPS work and how they can be superior to 

deterministic models.  Results from ensemble weather input into operational risk 

management (ORM) destruction of enemy air defense simulations clearly showed the 

applicability of  ensembles over deterministic inputs for future DoD missions (Eckel et al, 

2008).  The motive of this research is to help bridge the gap between the researcher and 

the weather forecaster by evaluating and quantifying the value of AFWA’s three EPS.  
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1.2 Technological and Numerical Weather Prediction Theory Advancement 

As technology and numerical weather prediction (NWP) theory have continued to 

progress, so has the importance of NWP in being able to provide operational forces with 

accurate and actionable weather intelligence.  With continued improvements in computer 

processing speed, physical parameterization schemes, estimates of the initial state of the 

atmosphere and data assimilation techniques, ensemble forecasting has come to the 

forefront of NWP.  AFWA runs EPS that contain multiple deterministic models with 

perturbed initial conditions and different parameterization schemes (AFW-WEBS, 2013).  

These prediction systems produce operationally useful modeled weather forecasts in a 

timely manner that, unlike a single deterministic model, provide a sense of forecast 

uncertainty by indicating the range of solutions forecasted by the ensemble members.  

1.3 Human Element  

Operational risk management is defined as balancing a mission’s objective against 

its risk.  Weather is a significant factor in a mission’s risk assessment.  Effective 

communication of this risk to operators remains the responsibility of Air Force weather 

forecasters who can use ensemble output to offer a better assessment of mission critical 

weather limiting factors to the warfighter.  Knowledge of the forecast probability 

provides the operator with additional information to develop the correct operational risk 

management for successful mission execution.  

1.4 Research Topic and Objective 

With the quantification of uncertainty enabled by ensemble NWP, the Air Force 

and other DoD organizations are currently transitioning from deterministic to stochastic 
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weather information for mission planning.  This allows for a more comprehensive 

understanding of how weather uncertainty might potentially affect the mission.  

Verification of ensemble predictions is not as straightforward as verifying deterministic 

predictions.  Each probability needs to closely match the observed frequency of the 

parameter forecasted for the EPS to be deemed valuable, while few such studies have 

been undertaken to validate many EPS (Ehrendorfer, 1997).  Therefore the main purpose 

of this study is to verify how well AFWA’s EPS - one-degree Global Ensemble 

Prediction System (GEPS) and 20km and 4km Mesoscale Ensemble Prediction Systems 

(MEPS20 and MEPS4) - perform by relating ensemble member agreement to probability 

of occurrence using station observations as well as defining EPS skill over climatology. 

This initial performance information will allow AFWA to fine-tune their EPS and 

provide useful metrics to forecasters in the field. 

1.5 Preview 

 In this chapter the remit and general application of ensemble weather forecasting 

in the Air Force is introduced.  Chapter 2 covers a more extensive overview of ensemble 

weather prediction in general and at AFWA.  The methodology for this research will be 

covered in Chapter 3.  The subsequent chapter covers all research findings followed by a 

conclusion of the findings, recommendations and future research possibilities.  
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II. Background 

2.1 Numerical Weather Prediction   

2.1.1 Chaotic Atmosphere and Model Error  

The earth’s atmosphere is a dynamic system of interconnected processes that must 

be modeled correctly to determine its future state.  These processes range from solar 

radiation entering the top of the atmosphere to sensible heat fluxes at the earth’s surface. 

Lorenz (1963) discovered that small variances in the initial state of the atmosphere lead 

to dramatically differing results as a numerical forecast progresses in time.  He suggested 

that error in correctly resolving the initial state of the atmosphere is the major factor in 

numerical forecast error and the ultimate limiting factor in atmospheric predictability 

(Lorenz, 1963).  Theoretically, given a perfect set of initial conditions, the atmosphere 

can be precisely modeled.  However, the initial conditions used for the data assimilation 

process in NWP have some degree of uncertainty due to instrument error and data 

sparsity, thus numerical forecasts always maintain some uncertainty that grows over time 

(Kalnay, 2003).  

2.1.2 Deterministic vs. Stochastic Prediction 

Since the first successful one-day numerical weather forecast in 1947 by Charney, 

Fjortoft and von Neumann, NWP for the majority of the past half-century has been 

deterministic forecasting (Charney et al, 1950).  Today a deterministic forecast is 

comprised of one model solution based on a single set of initial conditions and a set of 

fixed parameterization schemes for processes that cannot be resolved by the model due to 

their horizontal and vertical grid scales.  Even with computational advancements, 

improved resolution down to 1.67km, fewer required parameterizations, increased 
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availability of data, and improved data assimilation, deterministic models can still deviate 

significantly from observations in the early forecast hours (Kalnay, 2003).  Stochastic 

forecasts provide a way to account for these errors.  The lineage of stochastic forecasting 

methods can be traced back to Epstein’s (1969) concept of stochastic-dynamic 

forecasting, Leith’s (1974) Monte Carlo method and Hoffman and Kalnay’s (1983) 

lagged average method.  Today operational ensembles use breeding during data 

assimilation to create perturbations in initial conditions (Wei et al, 2008).  Breeding, the 

basis for all perturbations to initial conditions in operational use today, consists of:  (1) 

adding a small arbitrary perturbation to the initial state of the atmospheric analysis at a 

given time t0; (2) integrating the model from both the perturbed and unperturbed initial 

conditions for a short period t1 − t0; (3) subtracting one forecast from the other; (4) 

scaling down the difference field so that it has the same norm (e.g., root mean square 

amplitude) as the initial perturbation; (5) adding this perturbation to the analysis 

corresponding to the following time t1, and then repeating steps 2 through 5 forward in 

time to simulate error growth during the analysis period (Toth and Kalnay, 1993; Toth 

and Kalnay, 1997).  From this framework the ensemble transform bred vector, ensemble 

transform technique and ensemble transform Kalman technique were developed (Wei et 

al, 2008). Incorporating these perturbations methods into ensemble members provides an 

opportunity for each member in an EPS to represent the initial state as well as the future 

state of the atmosphere.  

2.1.3 Characterizing Ensemble Uncertainty 

By employing a set of perturbed initial conditions to account for observational 

uncertainty and various parameterization schemes to represent convection, turbulence, 
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surface features and other phenomena, an EPS helps quantify uncertainty in the forecast. 

This quantification is based on the spread of model solutions which can be portrayed 

using a probability density function (PDF).  The PDF indicates whether the ensemble 

members' solutions are closely grouped or widely spread, and whether the solutions 

cluster into distinct groups of closely-related solutions (Eckel and Mass, 2005).  A PDF is 

shown in Figure 1 depicting how modeled solutions can vary over time.  

 
 

 
Figure 1:  Probability density functions associated with ensemble prediction. The initial probability 
density function, pdf0, characterizes the uncertainty in the atmosphere's initial state.  The collection 
of the bold line and non-bold lines represents individual deterministic forecasts produced from 
different initial conditions while the dashed line is the actual state of the atmosphere.  The resulting 
forecast probability distribution at time t, pdft, characterizes the uncertainty in the forecasts, and in 
this case, is bimodal. 
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A single point forecast represented by the bold red line fails to resolve the future state of 

the atmosphere depicted by the dashed green line.  Each ensemble forecast, represented 

by solid non-bolded lines, are used to sample the uncertainty in the initial state of the 

atmosphere with two results close to the actual future state.  Note that this example shows 

a bimodal result meaning two subsets of modeled solutions deviated.  In a perfect 

ensemble the perturbed initial conditions would incorporate all sources of uncertainty; 

however, in reality an ensemble member can only include uncertainty to a limited degree 

based on the uncertainty in the initial PDF.   

2.2 Previous Research  

EPS are continually updated in efforts to optimally resolve the atmosphere.  These 

updates include varying numbers of members, boundary conditions, vertical levels, 

horizontal resolution, perturbation methods, and physics schemes, leading to a constant 

need for testing and evaluating EPS performance.  Wei et al (2008) tested four main 

perturbation methods in National Centers for Environmental Prediction’s (NCEP) Global 

Forecast System (GFS):  breeding, ensemble transform, ensemble transform with 

rescaling, and the ensemble transform Kalman filter.  They used the Brier score (BS), 

Brier skill score (BSS), and ranked probability skill score to show that the rescaled 

ensemble transform outperformed the other methods and that increasing the number of 

ensemble members generally increased these skill scores.   During a three month study, 

Buizza et al (2004) used outlier statistics, BSS, root mean square error, and pattern 

anomaly correlation to compare three widely used operational global spectral ensemble 

models:  the European Centre for Medium-Range Weather Forecasts (ECMWF), the 

Canadian Meteorological Centre’s (CMC) Global Ensemble Model (GEM), and the 
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NCEP’s Global Ensemble Forecast System (GEFS).  The majority of the verification 

metrics employed showed that the ECMWF performed best overall, with GEFS being 

competitive during the first few days and GEM being competitive in the last few days of 

the forecast.  Hamill et al (2007) discussed the utility of reliability diagrams and BSS in 

the calibration of EPS.  A recent study by Wang et al (2012) evaluated and compared 

Aire Limitée Adaptation Dynamique Développement International-Limited Area 

Ensemble Forecasting  (ALADIN-LAEF) EPS to ECMWF EPS to investigate whether 

any value is added by their regional EPS.  In this study ALADIN-LAEF EPS was 

comprised of 16 perturbed members of the ECMWF with a horizontal resolution of 18km 

while the ECMWF EPS was compromised of 50 members at a 50km resolution.  Results 

were compared over a two-month period in the summer of 2007 for Central Europe. 

ALADIN-LAEF EPS proved to be more skillful in forecasting surface weather 

phenomena including 10-meter winds, 12-hour accumulated precipitation and mean sea 

level pressure, despite fewer ensemble members, while the ECMWF EPS performed 

better for upper air weather variables.  While none of these studies directly tested 

AFWA’s EPS, they do provide some insight as to how some of the models used by 

AFWA’s EPS perform and ways to provide useful performance metrics.  Also, the 

ALADIN-LAEF and the ECMWF EPS comparison provides preliminary support for 

possible differences between AFWA global and regional EPS. 

2.3 Air Force Weather Agency Ensembles 

2.3.1 Probability Generation 

 The EPS used by AFWA do not have enough members to explicitly resolve a 

PDF therefore other methods must be employed to estimate forecast probability (AFW-
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WEBS, 2013).  These probabilities are generated by a technique called uniform ranks.  

This method first takes into account democratic voting - how many of the ensemble 

members that make up the EPS are forecasting the selected threshold.  For example, if 7 

out of 10 members forecast winds greater than 25kts, the probability of that event 

occurring is 70% as shown in the top portion of Figure 2.   

 
 
Figure 2:  Graphic of probability generation methods used by AFWA. The top half depicts a basic 
democratic method of generating a probability based on how many ensemble members forecast the 
event. The bottom half, uniformed ranks, is a more robust method that also uses the values that did 
not exceed the threshold desired to generate a more realistic probability. (Adapted from AFW-
WEBS, 2013.) 

 
 
 
Democratic voting probability generation, however, disregards some portions of 

the PDF leading to more extreme forecast probabilities.  A more robust approach lies in 

uniformed ranks which involves adding a probability rank, using democratic voting, and  

using linear interpolation to account for how close the forecasts that did not exceed the 

forecast threshold desired are.  This is shown in the bottom portion of Figure 2.  By doing 

so, portions of the PDF that the democratic voting method ignored are now accounted for, 
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producing a more realistic probability of 66.3%.  If all the ensemble members forecast a 

value below or above the forecasted threshold, this probability falls on the tail of the PDF 

and in an extreme rank as shown in Figure 3. 

 
 

 
Figure 3:  Graphic of probability generation when forecasted threshold falls in an extreme rank. A 
Gumbel distribution function is used to find the numerical distance between the highest forecasted 
value and the desired threshold. (Adapted from AFW-WEBS, 2013.) 

 
 
When this takes place the approach used is similar; however, the probability is found by 

taking a portion of the probability in the last rank based on the numerical distance 

between the highest forecasted value and the desired threshold using a Gumbel 

distribution as shown in Equation 1 (Wilks, 2011). 

Equation 

1 
𝐺𝐶𝐷𝐹(𝑥) =  𝑒𝑥𝑝 �−𝑒𝑥𝑝 �

𝜉 − 𝑥
𝛽

�� (1) 

Here 𝜉 and 𝛽 are Gumbel parameters defined in Equations 2 and 3 (Wilks, 2011), 

respectively, and 𝑥 is the variable. 

Equation 2 

𝛽 =
𝑠√6
𝜋

 (2) 

Equation 3 𝜉 =  �̅� −  𝛾𝛽 (3) 
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Here 𝑠 is the standard deviation, �̅� is the sample mean, and 𝛾 is Euler’s constant -  

0.57721.  

Many meteorological phenomena that Air Force weather forecasters try to 

forecast such as winds greater than a certain threshold or lightning occurrence within a 

specific radius are not directly resolved by AFWA’s EPS.  Thus, algorithms must be 

employed to generate probabilities from existing model output.   

Specifically for wind threshold probabilities, a continuous distribution function 

must be generated to capture the surface wind gust for each ensemble member.  To create 

this continuous distribution function, a generalized extreme value distribution is used as 

defined in Equation 4 (Wilks, 2011).  

Equation 

4 𝑓(𝑥) =  𝑒𝑥𝑝 �− �1 + 
𝜅(𝑥 −  𝜁)

𝛽
�
−1
𝜅
� (4) 

Each ensemble member’s sustained wind speed is used as the shift parameter, 𝜁 while the 

shape parameter, 𝜅, is three over land and one over water (AFW-WEBS, 2013).  The 

scale parameter, 𝛽, for over land is each ensemble members sustained wind speed in 

meters per second raised to the 0.75 power and a value of 1.25 for over water (AFW-

WEBS, 2013).   

For lightning, the algorithms used by AFWA to create a probability of at least one 

lightning strike within the forecast radius of the location is based on regression equations 

developed from Rapid Update Cycle (RUC) model analysis and observed lightning and 

precipitation over CONUS (AFW-WEBS, 2013).  These algorithms use known model 

output to include convective potential available energy, lifted index, precipitable water, 

convective inhibition and accumulated precipitation.  Each individual member’s 
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probability is calculated and then averaged with the other members to create the EPS 

probability forecast.  For a mathematical description of the lightning algorithms 

employed by AFWA, reference Appendix A.  

2.3.2 Global Ensemble Prediction System (GEPS)  

The GEPS is produced at a one-degree resolution and produces output at a 6-hour 

forecast interval out to 240 hours.  It is comprised of 21 members each from the NCEP 

GFS and the CMC’s GEM, with 20 additional members from the Fleet Numerical 

Meteorology and Oceanography Center (FNMOC) Navy Operational Global 

Atmospheric Prediction System (NOGAPS), totaling 62 ensemble members (AFW-

WEBS, 2013).  Because GEPS is comprised of multiple EPS it is considered a super 

ensemble.  Other than amalgamating the members to create the super ensemble, no 

further physics configuration changes are made outside of what is done at each respective 

modeling center.  Two of the models used in GEPS, the GFS and NOGAPS are global 

spectral models, which represent atmospheric parameters as a series sum of spherical 

harmonic functions.  As harmonics of higher wavenumbers are added to the series, the 

atmosphere can be modeled with higher resolution.  The GEM is a global grid model that 

uses finite differencing to solve the atmosphere’s governing equations. 

The GFS used by AFWA utilizes stochastic physics parameterizations and is at a 

spectral resolution of 254 wavenumbers (T254) with 64 vertical levels out to 192 hours 

(AFW-WEBS, 2013).  Beyond this point and out to 384 hours the resolution is reduced to 

190 wavenumbers (T190) (AFW-WEBS, 2013).  For initial conditions, the GFS uses an 

ensemble transform bred vector with rescaling.  A detail description of model 

characteristics can be found at: http://www.emc.ncep.noaa.gov/GEFS/mconf.php. 
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The NOGAPS is characterized by T159 with 42 vertical levels (AFW-WEBS, 

2013).  It uses an ensemble transform scheme for its initial condition and no perturbed 

parameterizations for its physics schemes.  For further model characteristics please 

reference: http://www.nrlmry.navy.mil/metoc/nogaps/nogaps_char.html. 

The GEM is characterized by a horizontal resolution of 66km with 74 vertical 

levels and uses an ensemble transform Kalman filter for its initial conditions (AFW-

WEBS, 2013).  Houtekamer and Mitchell (2009) explain that Kalman filters are used to 

maintain a representative spread between the ensemble members, avoiding the problem 

of inbreeding by using one ensemble of short-range forecasts as background fields in data 

assimilation while employing the weights calculated from another ensemble of short-

range forecasts.  For further model characteristics please reference: 

http://weather.gc.ca/ensemble/verifs/model_e.html. 

Having different wavenumbers for each EPS results in differing horizontal 

resolutions.  To standardize the resolution, all members of the GEPS are re-gridded to a 

one-degree grid (Kuchera, 2013).  Therefore all the resulting probabilities have a one-

degree horizontal resolution regardless of the wavenumbers for each EPS.   

2.3.3 Mesoscale Ensemble Prediction System (MEPS)  

The MEPS is a finer resolution model than GEPS, created to better resolve 

mesoscale meteorological features such as larger scale convection features.  Each of its 

10 members is run independently using different configurations in the framework of the 

Weather Research and Forecasting (WRF) Model version 3.4 from April to September 

and version 3.5 from September to October (AFW-WEBS, 2013).  The 10 member suite 

of WRF members changed configurations four times during the course of this study and 



 

14 

is detailed in Appendix D.  For further information on AFWA’s choice of operational 

configuration and physics options, refer to the User’s Guide for the NMM Core of the 

Weather Research and Forecast Modeling System Version 3 Handbook.  WRF is a fixed-

domain model that uses finite differences to represent the primitive equations.  The 

MEPS obtains its initial and lateral boundary conditions from deterministic global 

models.  These deterministic models include the GFS from NCEP, the GEM from CMC 

and the Unified Model (UM) from the United Kingdom Met Office (UKMO).  The 

ensemble members are created by varying the global model chosen for the initial and 

boundary values and the physics parameterizations of mesoscale and microscale 

processes - surface fluxes, the planetary boundary layer (PBL), cloud microphysics, 

cumulus parameterization, etc.  The MEPS is run at horizontal grid resolutions of 20km 

and 4km. The 20km model is comprised of a hemispheric domain and tropical swath 

covering the majority of the tropics and is run every 12 hours at 3-hour time steps out to 

144 hours producing forecasts from 6 to144 hours.  Table 1 details its characteristics.  

 
 

Table 1:  20km MEPS domains, cycle times, completion times and forecast hours (AFW-WEBS, 
2013). 

MEPS Domain Cycle Time Run Complete Forecast Hours   
Northern Hemisphere 06Z/18Z 0830Z/2030Z 144 

Tropical Swath 06Z/18Z 0830Z/2030Z 144 
 
 
 
AFWA’s 4km MEPS, as depicted in Table 2, covers various operationally 

significant fixed domains in addition to seven relocatable 4km domains for tropical 

cyclones and other contingencies.  Its members are comprised of the same 10 ensemble 

members as MEPS20, with forecast output for every hour out to 72 or 84 hours 
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depending on location, while all locations in this study have output out to 72 hours.  The 

cumulus parameterization is turned off in MEPS4 (AFW-WEBS, 2013).  Weisman et al 

(1997) showed that a horizontal resolution of 4km is small enough to explicitly represent 

most convective scenarios.  

 
 
Table 2:  4km MEPS domains, cycle times, completion times and forecast hours   (AFW-WEBS, 
2013). 

MEPS Domain Cycle Time Run Complete Forecast Hours   
CONUS 00Z/12Z 0230Z/1420Z 72 
East Asia 00Z/12Z 02Z/14Z 72 

Alaska 00Z 03Z/15Z 72 
South West Asia 06Z 10Z 72 

Europe 06Z 12Z 72 
Afghanistan 18Z 20Z 72 
Colombia 18Z 21Z 72 

JTWC 00Z/12Z 05Z/17Z 84 
28 OWS 00Z 04Z 72 

Contingency 00Z 06Z 72 
17 OWS 12Z 15Z 84 
1 WXG 18Z 22Z 72 
21 OWS 18Z 23Z 72 

 
 

2.4 Research Question and Objective 

While AFWA’s EPS Point Ensemble Probability (PEP) bulletins are understood 

to be useful for characterizing forecast uncertainty for point locations, none of the three 

EPS point probabilities have undergone a site specific rigorous validation process.  This 

research intends to begin that validation by comparing GEPS, MEPS20, and MEPS4 

ensemble forecast probabilities with the actual probability of occurrence using 

Aerodrome Routine Meteorological Reports (METAR) and Aerodrome Special 

Meteorological Reports (SPECI) for various forecast parameters and geographical 
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locations.  Reliability and model skill diagrams with respect to forecast duration and were 

used to determine how well forecast probability compares to the observed frequency of 

occurrence.  The desire is for this validation to enable operational weather forecasters to 

translate ensemble probability of occurrence to the actual probability that the threshold 

will be exceeded and to determine how long each EPS forecast is useful.   
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III. Methodology 

3.1 Location and Time Period Selection 

Ten geographically diverse locations were chosen for this study comprised of Air 

Force, Army, and Navy bases.  These sites are listed with their respective International 

Civil Aviation Organization airport code in parentheses.  Five locations are within the 

United States:  Cape Canaveral AFS, Florida (KXMR); Little Rock AFB, Arkansas 

(KLRF); Tinker AFB, Oklahoma (KTIK); Dyess AFB, Texas (KDYS); and Fort Greely, 

Alaska (PABI) (Figure 4).  Five locations are overseas:  Kadena AB, Japan (RODN); 

Kunsan AB, South Korea (RKJK); Camp Lemonnier, Djibouti (HDAM); Ramstein AB, 

Germany (ETAR); and Sigonella NAS, Italy (LICZ) (Figure 5). These locations were 

selected based on forecast availability of the three EPS coupled with a high frequency of 

severe weather for their respective latitudes.  The forecast parameters of interest for this 

study include thunderstorms, appreciable precipitation, and strong winds.  These types of 

events are typically the most damaging to DoD resources.  A time period ranging from 

April through October 2013 was selected for this study providing an ample data set for 

phenomena of interest.  A larger sample would have been tested; however, due to the data 

storage limitations that ensemble output currently presents, AFWA does not archive 

ensemble output.  

3.2 Data Sources 

3.2.1 Point Ensemble Probability Bulletins (PEP Bulletins)  

PEP bulletins (Figure 6) were provided through collaboration with Evan Kuchera, 

AFWA’s 16/WS Deputy Chief, Numerical Models Flight, Fine Scale Models and 

Ensembles Team Lead.   
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Figure 4:  Map of locations selected in the United States based on frequency of severe weather events 
for the respective latitude. 

 
 

 
Figure 5:  Map of locations selected overseas based on frequency of severe weather events for the 
respective latitude. 
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Six different parameters from the PEP bulletins for each of AFWA’s EPS were used 

in this research.  For the GEPS and MEPS20, the parameters are:  winds > 25kts     

(11ms-1), > 35kts (15ms-1), and > 50kts (22ms-1); precipitation > 0.10in (2.5mm) in 6 

hours, > 2.0in (51mm) in 12 hours; and, lightning within 20km.  For the 4km MEPS the 

parameters are:  winds > 25kts (11ms-1), > 35kts (15ms-1), > 50kts (22ms-1); precipitation 

> 0.05in (1.27mm) in 6 hours, > 2.0in (51mm) in 12 hours; and, lightning within 20nm 

(37.04km).  For each forecast interval, the probability is valid from the minute after the 

previous forecast hour to the current forecast hour.  The colors overlaid on the forecast 

probabilities are based on a criteria developed at AFWA to highlight low risk (green), 

moderate risk (yellow) and high risk (red) to a warfighter’s ORM process. 

3.2.2 Aerodrome Routine Meteorological Report (METAR) and Aerodrome 

Special Meteorological Report (SPECI)  

To compare EPS PEP bulletins to actual occurrences, this study used METARs 

and SPECIs archived by the 14th Weather Squadron, the Air Force’s Combat 

Climatology Center, for the 10 selected locations.  The METAR and SPECI format is 

prescribed by World Meteorological Office Publication 306 – Manual on Codes.  The 

raw METARs and SPECIs were decoded and provided for this research by Mr. Jeff 

Zautner, 14/WS Meteorologist, Tailored Product Analyst.  METARs are taken as a 

routine observation by an automated weather sensor once per hour within five minutes 

before the top of the hour for which the observation is valid.  Anytime prescribed change 

thresholds were met, a SPECI observation was taken between routine top of the hour 

METARs.  The worst-case condition within a particular forecast hour, whether from a 

METAR or a SPECI observation, was used to compare to the PEP bulletin probabilities. 
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3.2.3 Climatology  

To evaluate the skill and utility of AFWA’s EPS, the forecasts were analyzed using 

several different metrics.  Most metrics require a reference, climatology, to compare with 

the forecasts.  Climatology for each location was also provided by Mr. Jeff Zautner at the 

14/WS.  Maintaining consistency with the forecast intervals for each EPS, a 6-hour, 3-

hour and 1-hour climatology for each month over a span of 10 years, January 2003 to 

December 2012, was used for the respective locations. This data set took into account up 

to 310 observations for each hour.  The exception to this is Cape Canaveral (KXMR), 

which did not start taking METARs until 2006, thus totaling up to 212 observations used 

for each hour.  For each wind parameter, the wind value and the peak wind remark were 

both considered to provide the highest wind recorded.  For thunderstorms, on station, 

vicinity and lightning distant remarks were all used.  Lastly, for precipitation parameters, 

routine METARs did not begin reporting 1-hour precipitation sums until sometime in 

2007.  Prior to 2007 precipitation was only required to be summed every 6 and 24 hours 

starting at 00Z for the respective day.  To maintain consistency with all precipitation 

climatology, a smaller sample of METARs was used for each location running from 

January 2008 to December 2012 totaling up to a possible 155 observations for each 

respective hour.   

3.3 Validation 

3.3.1 Software Tools 

Computer code was created to extract AFWA’s PEP bulletins, METAR/SPECI 

and climatology spreadsheets, and to perform the statistical analysis used for this study.  

Code was also created to construct all map figures using MATLAB ® mmap toolbox. 
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3.3.1 Extracting PEP Bulletin Probabilities 

Each PEP bulletin was in HTML format.  These files were extracted based on 

month, day and forecast hour and placed in columns for each parameter.  Once extraction 

was complete, each PEP bulletin was placed into a parsed text file as shown in Table 3. 

 
 
Table 3:  Example of extracted GEPS PEP bulletin for each parameter by month, day and hour.  
Probabilities are provided in percent. 

 Month Day Hour 
Lightning 

within 
20km 

Winds 
> 25kts 

Winds 
> 35kts 

Winds 
> 50kts 

Precip 
> 0.1in 
in 6hrs 

Precip 
> 2in in 
12hrs   

6 7 0 10 16 0 0 42 0 
6 7 6 6 9 0 0 24 0 
6 7 12 0 2 0 0 17 0 

 
 
 

3.3.3 Extracting METAR and SPECI Occurrences 

All METARs and SPECIs were parceled out into smaller spreadsheets for each 

location and month.  Rolling hourly sums were used for precipitation amounts; therefore, 

each month also included the last day of the previous month.  Also, there is always a roll 

over into the next month due to the forecast length for each EPS.  The GEPS has the 

longest forecast duration at 240 hours thus 10 days of the following month were tacked 

on to the end of each month’s spreadsheet.  Since the shortest EPS forecast frequency is 1 

hour, all the extracted METAR and SPECI for a given hour were checked to see if any of 

the six parameters tested occurred.  If a particular event occurred between hours, it is 

always marked as occurring at the latter hour since each forecast probability includes the 

hour of forecast minus the previous 59 minutes.  Once an event occurs, either at the 

routine METAR time or within the hour as a SPECI, it is flagged as occurring with a 
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value of 1.  If it did not occur, the value remains 0.  Each SPECI occurring prior to the 

next routine METAR was flagged for each meteorological parameter that occurred.  A 

text file was created for each location and month plus 10 days.  In the text file, each row 

corresponds to a month, day and hour while each column corresponds to one of the six 

meteorological parameters indicated in Table 4.   

 
 
Table 4:  Example of METAR and SPECI verification for each parameter by month, day and hour. 
A value of 1 indicates that the parameter occurred during the previous hour. 

Month Day Hour 
Lightning 

within 
20km 

Winds 
> 25kts 

Winds 
> 35kts 

Winds 
> 50kts 

Precip 
> 0.1in 
in 6hrs 

Precip 
> 2in in 
12hrs   

6 7 4 1 1 0 0 1 0 
6 7 5 1 0 0 0 1 0 
6 7 6 0 0 0 0 1 0 

 
 
 

3.3.4 Verification 

For all three EPS, the model grid point varies in location and distance from the 

forecast site.  Table 5 details the latitude and longitude for each site along with the 

distance from each site to the three EPSs’ closest model grid points in nautical miles and 

kilometers. 

For all forecast sites, MEPS4 is within approximately 1nm/1.85km, MEPS20 is 

within approximately 4.5nm/8.33km, and the GEPS is the nearest degree in latitude and 

half degree in longitude to the forecast sites which range from approximately 

8nm/14.82km to 29nm/53.71km.  An example of model grid point variability is evident 

in the difference between Figure 7 and Figure 8.  The probability generated at these 

closest grid points was used for all wind and precipitation thresholds.   
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Table 5:  Location and distance from the closest model grid point for each EPS in nm and km (AFW-
WEBS, 2013). 

Site Lat (°) Lon (°) GEPS (nm/km) MEPS20 (nm/km) MEPS4 (nm/km)   
ETAR 49.42 7.58 25.21/46.69 1.71/3.16 0.88/1.64 
HDAM 11.55 43.17 28.77/53.28 1.73/3.21 1.03/1.91 
KDYS 32.42 -99.83 26.42/48.93 4.29/7.94 1.00/1.86 
KLRF 34.92 -92.15 8.92/16.52 4.08/7.55 0.69/1.27 
KTIK 35.42 -97.37 25.86/47.89 3.93/7.28 0.79/1.47 

KXMR 28.47 -80.53 28.09/52.02 3.53/6.53 1.04/1.93 
LICZ 37.38 14.92 23.35/43.24 2.28/4.21 0.92/1.71 
PABI 64.00 -145.73 6.12/11.34 4.48/8.29 0.99/1.83 
RKJK 35.90 126.62 8.27/15.32 1.09/2.02 0.47/0.88 
RODN 26.35 127.77 25.48/47.19 1.33/2.47 0.17/0.32 
 
 
 

Lightning, on the other hand, represents the probability at the forecast site and for 

its surrounding area up to either within 20km or 20nm (37.04km) depending on which 

EPS is used.  Both the GEPS and MEPS20 forecast lightning for a range of 20km for the 

forecast site, which has an area of 314.16 km2.  The closest METAR verification radius is 

vicinity thunderstorms (10nm/18.52km), which has an area of 269.38km2.  The 4km 

MEPS forecasts lightning for a range of 20nm from the forecast site, which has an area of 

1077.54km2.  This area falls between the vicinity thunderstorm area already mentioned 

and the lightning distance verification radius (30nm/55.56km) which is an area of 

2424.46km2.  For comparison, the respective forecast range rings of 20km and 20nm 

(37.04km) are plotted in Figure 7 and Figure 8 along with the METAR verification range 

rings of 5, 10 and 30nm (9.26, 18.52 and 55.56km).  To bolster the sample size of 

lightning events, lightning occurrence on station in the predominate grouping of the 

METAR (within 5nm of the observation point), vicinity (lightning within 5-10nm), and 

distant lightning (lightning out to 30nm in the remarks section of the observation) were 
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used.  Consequently, the forecast probabilities for the GEPS and MEPS20 have to be 

scaled by a factor of eight and the MEPS4 by a factor of two to approximate the 

verification area of 2424.46km2.  By scaling, the assumption is made that all areas used to 

make up the validation areas have the same forecast probability.  Please reference 

Appendix B for mathematical detailing of how this is accomplished while keeping the 

forecast probabilities less than 100%.   

 
 
 

 

Figure 7:  Little Rock AFB with range ring distances of 5, 10 and 30nm shown in black, GEPS and 
MEPS20 lightning within 20km range ring shown in blue, and  MEPS4 lightning within 
20nm/37.04km range ring shown in green.  Also, each model grid point is displayed; GEPS in blue, 
MEPS20 in red and MEPS4 in green. 
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Figure 8:  Dyess AFB with range ring distances of 5, 10 and 30nm shown in black, GEPS and 
MEPS20 lightning within 20km range ring shown in blue, and  MEPS4 lightning within 
20nm/37.04km range ring shown in green.  Also, each model grid point is displayed; GEPS in blue, 
MEPS20 in red and MEPS4 in green. 
 
 
 

3.3.5 Frequency of Occurrence vs. Ensemble Probability 

Frequency of occurrence is the ratio of the number of actual occurrences of an 

event to the number of possible occurrences (Devore, 2004).  This study measured the 

frequency of occurrence from METARs and SPECIs of the selected weather parameters 

as given by,  

Equation 

5 𝑃(𝑦𝑖) =  
𝑁𝑖
𝑛

 ,𝑛 =  �𝑁𝑖

𝑙

𝑖=1

 (5) 

where 𝑃(𝑦𝑖) is the observed frequency of a particular event 𝑦𝑖, 𝑁𝑖 is the number of actual 

occurrences of event 𝑦𝑖, and 𝑛 is the total number of forecasted occurrences (Wilks, 
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2011).  These observed frequencies were plotted in reliability diagrams for the ensemble 

forecast probabilities from the PEP bulletins.  The goal is for the forecast probabilities to 

optimally match the probability of occurrence allowing for a skillful EPS.  

3.3.6 Brier Score  

The Brier score (BS) expresses how well a probability forecast verifies in relation 

to occurrence and non-occurrence for a specific forecast parameter (Brier, 1950).  The BS 

averages the squared differences between the groupings of forecast probabilities and the 

corresponding binary representation of whether or not the forecasted event occurred 

(Wilks, 2011).  The most widely used form of the BS is shown in Equation 6 where n is 

the number of occurrences, y is the forecast probability from 0 - 1.0, and 𝑜 indicates 

whether the event occurred, with 1 signifying occurrence and 0 non-occurrence.  

Equation 
6 𝐵𝑆 =  

1
𝑛

 �(𝑦𝑘 −  𝑜𝑘)2
𝑛

𝑘=1

    (6) 
 

 (Note:  make font color of caption white) 
For this study, the BS was calculated using ensemble probabilities, 𝑦𝑘, from AFWA’s 

PEP bulletins and actual occurrences, 𝑜𝑘, from the decoded METAR and SPECI 

observations.  Probabilistic forecasts that perfectly match reality (i.e. 100% forecast 

probability for every occurrence and 0% forecast probability for every non-occurrence) 

will produce a BS of 0, while forecasts that are universally incorrect (i.e. 100% forecast 

probability for every non-occurrence and 0% forecast probability for every occurrence) 

will result in a BS of 1; therefore, a lower BS indicates more reliable probabilistic 

forecasts.   

To provide further utility of the BS, Murphy (1973) suggested that the BS can be 

decomposed into three terms – reliability, resolution and uncertainty as indicated in 

Equation 7 (Wilks, 2011). 
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Equation 
7 

𝐵𝑆 =  
1
𝑛

 �𝑁𝑖(𝑦𝑖 −  𝑜𝚤�)2
𝐼

𝑖=1

−   
1
𝑛

 �𝑁𝑖( 𝑜𝚤� −  �̅�)2
𝐼

𝑖=1

+ �̅�(1 − �̅�) (7) 

                  𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦                    𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛           𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 
 
The first term, reliability, consists of the weighted average of the squared differences 

between binned forecast probabilities, 𝑦𝑖, and the subsample relative frequency of 

occurrences for the parameter in question, 𝑜𝚤� .  Equation 8 from Wilks (2011) shows how 

𝑜𝚤�  is calculated.   

Equation 

8 
𝑜𝚤� =  

1
𝑁𝑖

 � 𝑜𝑘
𝑘∈𝑁𝑖

  (8) 

A reliability value of 0 indicates that the forecast exhibits perfect reliability meaning that 

the forecast probability perfectly matches the observed frequency while a score of 1 

indicates no correlation between the forecast probability and the observed frequency 

(Wilks, 2011).  The second term, resolution, consists of the weighted average of the 

squared differences between the subsample relative frequency of the parameter in 

question, 𝑜𝚤� , and the overall relative frequency (climatology), �̅�, for the parameter.  The 

overall relative frequency as shown in Equation 9 is the sum of all the occurrences 

divided by the sample size.    

Equation 

9 �̅� =  
1
𝑛

 �𝑜𝑘

𝑛

𝑘=1

 (9) 

Resolution values range from 0 to 1.  The higher the resolution value, the easier it is to 

obtain a good BS and BSS.  A high resolution value indicates the EPS ability to forecast 

higher probabilities that occur.  The third term, uncertainty, is independent of the 

probability forecast and is a function of the climatology used.  Events that occur rarely or 

frequently will possess a low uncertainty while an event that never occurs or always will 
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have a value of 0.  The most difficult events to forecast are those that have climatology of 

exactly 50% probability of occurrence, thus leading to the highest obtainable uncertainty 

value of 25%.  These examples as well as all other scenarios are shown in Figure 9.  

 
 

 
Figure 9:  Graph of the relationship between uncertainty and climatology. 

 
 
 

The BS decomposition shown in Equation 7 will never exactly equal the BS from 

Equation 6 due to multiple factors.  First, the decomposition requires binning the EPS 

probabilities to solve, leading to variance and covariance within the bins used 

(Stephenson, 2008).  Stephenson showed that with the addition of two terms in the 

decomposition, one accounting for the variance and the other the covariance, the impact 

of the truncation errors from binning is less severe.  Secondly, if an enormous sample of 

forecast probabilities and corresponding observations are tested, allowing for each 

possible probability from 0-1.0 to have its own bin, the three terms in the decomposition 

will not equal Equation 6 due to bias in each term (Bröcker, 2012).  Bröcker showed that 

even if the sample size is increased to infinity, the reliability is systematically 

overestimated and the uncertainty is systemically underestimated while resolution can be 

either.  To account for these biases, Ferro and Fricker (2012) developed a new 
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decomposition where each term is less sensitive to their respective biases.  These two 

additional decompositions were not used in this research as the results showed that, 

overall, the reliability, resolution and uncertainty display correct trends in producing BSS 

values. 

3.3.7 Brier Skill Score  

The more rare an event, the easier it is to obtain a good BS without the EPS 

possessing any real skill over climatology.  For this reason, the BSS was used to 

determine the relative skill of the EPS over that of climatology forecasting whether or not 

an event will occur.  BSS is defined in Equation 10 as the ratio of the BS minus the 

climatological BS (𝐵𝑆𝑟𝑒𝑓) to a perfect BS of 0, minus the climatological BS (𝐵𝑆𝑟𝑒𝑓) 

(Wilks, 2011).  

Equation 

10 
𝐵𝑆𝑆 =  

𝐵𝑆 −  𝐵𝑆𝑟𝑒𝑓
0 −  𝐵𝑆𝑟𝑒𝑓

= 1 −  
𝐵𝑆
𝐵𝑆𝑟𝑒𝑓

 (10) 

Using the decomposition provided in Equation 7 and some algebra, the BSS can also be 

solved for in terms of reliability, resolution and uncertainty as shown in Equation 11 

(Wilks, 2011).   

Equation 

11 
𝐵𝑆𝑆 =  

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

 (11) 

Because of the truncation error due to binning and the biases in the three terms already 

mentioned, the BSS was calculated and plotted using Equation 10.  While the BSS from 

Equation 11 is not plotted, it is important to understand how the decomposition values 

can be used to solve for the BSS.  
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3.3.8 Reliability Diagrams 

Although the numerical values for reliability, resolution, uncertainty, BS and BSS 

provide a sense of how well an EPS performs, a more comprehensive approach lies in the 

conceptual understanding and graphical depiction of a reliability diagram as shown in 

Figure 10.  Shaded in red is the area of skill.  This area of skill encompasses the region 

between the vertical line created from the intersection of the climatology and the zero 

reliability line to the diagonal line that splits the area between the climatology and the 

zero reliability line into equal areas.  For this example, the 1-10% probability bin falls on 

the skill line thus being marginally skillful.  The 41-50% bin falls outside the area of skill 

while the remaining bins fall within the area of skill making the BSS positive.  When 

resolution is greater than the reliability, positive skill will exist.  However, if binning and 

bias errors are greater than the difference between the two, it is possible for the reliability 

to be greater than the resolution while Equation 10 still gives a positive BSS.  This was 

very rarely observed in the approximately 5,000 figures investigated.  Reliability (how 

close the observed frequencies of occurrences match the zero reliability line), resolution 

(how far away the is the observed frequency away from climatology) and the skill of the 

EPS (majority of the observed frequency weight in the in area skill) are clearly apparent 

and aided by the value of each metric (REL = reliability, RES = resolution and UNC = 

uncertainty) in Figure 10.  To create reliability diagrams, the EPS forecast probabilities 

were binned to get the total number of forecasts that occurred in each respective bin.  The 

bin width chosen was 10% with the exception of having a 0% bin when the EPS forecasts 

no chance of occurrence.  Next, the number of times the event occurred in each bin was 

calculated.  These two quantities, forecast probabilities and number of times the event 
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occurred, allowed for the calculation of the frequency of occurrence as detailed in 

Equation 5. 

 
 

 
Figure 10:  Reliability diagram example. The observed frequency for each probability bin is depicted 
as the black line with green points representing the center of each bin.  The area of skill is 
highlighted in red. The dashed diagonal line represents the line of zero (perfect) reliability.  The 
climatology (no resolution) is shown as a horizontal dashed line.  BS and BSS are provided along 
with the components that make up the score. The subplot indicates the number of forecasts in each 
bin. 

 
 
 

Each of these observed frequency values was plotted as a green dot at the center 

of each bin with a line connecting each point.  Also, the climatology and zero reliability 

lines were plotted for each figure.  The more the frequency of occurrence line correlates 

with the zero reliability line, the lower the reliability value, thus achieving a better score.  
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A good score can be achieved regardless of how frequent the event occurs at the location.  

For resolution, the further the forecast probabilities verify away from climatology, the 

higher and better the score.  If the EPS struggles to forecast away from climatology, the 

resolution values will remain small.  Uncertainty will fluctuate solely due to the 

climatology.  Lastly, to show the sample size within each bin, all of the reliability 

diagrams include a subplot detailing how many forecasts exist for each bin at the bottom 

of the plot as shown in Figure 10.  
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IV. Results 

 4.1 EPS Skill 

 For each location and the six parameters tested, the utility of each EPS with 

respect to forecast hour is calculated using the BSS as defined in Equation 10 along with 

the decomposition of the BS from Equation 7.  Two parameters, winds > 50kts and 

precipitation > 2.0in in 12 hours, occur too infrequently to obtain any useful results thus 

are not included.  Because it would be impractical to include all the figures generated, 

tables are used to convey forecast skill for each parameter.  These tables list each site and 

EPS with the corresponding forecast hours of positive skill, skillful percentage of the 

forecast time, and the average positive skill for sites that had a sufficient number of 

occurrences, approximately 15 events or more, to obtain meaningful results.  Typically 

with less than 15 events the BSS behaves erratically and little value is gleaned from the 

results.  Due to diurnal variations in the uncertainty, some periodicity is evident in the 

BSS as shown in Figure 11.  The BSS is shown in black while the subplot in the lower 

portion shows the composition of the BSS – uncertainty in green, reliability in red and 

resolution in blue.  To get a better sense of model skill trends, the BSS trend is smoothed 

by averaging with the two closest BSS values to its left and right taking into account five 

BSS values total.  For the BSS values next to the endpoints, they are averaged with the 

first and last BSS values, respectively, while the first and last BSS values are unaltered.  

These values are used to create the duration of forecast hours with positive skill shown in 

Tables 6 though 9.  The BSS with respect to all forecast hours as illustrated in Figure 11 

will continue to show unaltered BSS values.   
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Figure 11:  GEPS Precipitation > 0.1in BSS for Ramstein AB from April-October 2013 with 
reliability, resolution and uncertainty data shown in the subplot. 
 
 

All three EPS overforecast lightning.  As horizontal resolution increases the BSS 

is positive for more forecast hours.  In general, for precipitation, the GEPS provides the 

longest duration of positive skill; however, both of AFWA’s regional EPS (MEPS20 and 

MEPS4) typically provide a greater BSS during their respective hours of positive skill.  A 

potential reason for the GEPS having a longer period of positive skill lies in its 

composition of 62 ensemble members from three different model systems as compared to 

the MEPS20 and MEPS4 only being comprised of 10 members from one model system.  

Having 52 additional members allows the GEPS to account for more forecast uncertainty 

whereas the spread of model solutions should provide a more realistic resemblance of the 
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future state of the atmosphere.   However, because of the one-degree, approximately 

111km resolution, the parameters tested are resolved with less accuracy than with the 

MEPS20 and MEPS4.  In most cases the MEPS20 average skill for precipitation is close 

to the GEPS average skill and in some cases less.  The tradeoff for having less ensemble 

members and an increased horizontal resolution does not pay off in all cases for the 

MEPS20 while its does for the MEPS4.  The opposite is true for winds where both the 

MEPS20 and MEPS4 prove to have a significant increase in average positive skill versus 

GEPS.  Tables 6 through 9 highlight differences that arise due to geographic location, 

model resolution, and convective parameterization vs. explicit resolving convection.  

Additionally, to take a closer look at possible conditional biases, reliability diagrams 

must be analyzed to see what trends exist in the EPS.  

4.2 Lightning 

Table 6 indicates there is no real correlation between geographic region and 

positive skill duration.  However, for the four sites where the three EPS have a sufficient 

sample size of occurrence, the MEPS4 produces the longest duration of positive forecast 

skill while the MEPS20 average positive BSS are slightly higher (< 0.05) than the 

MEPS4.  This can be attributed to the MEPS4 having more positive forecast hours of 

positive skill than the MEPS20. For MEPS20, the BSS is only positive for a few hours 

and has a steeper slope towards negative values.  Since the average positive BSS are 

similar and the MEPS4 has considerably more forecast hours of positive skill, the MEPS4 

performed the best.  One reason that the MEPS4 outperformed the other two EPS is that 

the 4km horizontal grid spacing allows for resolution of smaller convective processes 
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with improved precision while the other two EPS rely on cumulus parameterization 

schemes for generation of thunderstorms.  

For most locations there were more hours that possessed a positive BSS than 

indicated in Table 6.  These hours do not show up in the table because, typically, the 

hours surrounding these positive BSS have larger negative values and when using the 

smoothing technique already mentioned, these averaged hours are negative.  

 
 
Table 6:  Lightning Positive Skill Duration, Skillful Percentage of Forecast and Average Positive 
Skill.  Blanks indicate insufficient occurrence sample size. 

Site EPS Forecast Hours of Positive 
Skill 

Skillful % of 
Forecast 

Avg Positive 
Skill  

ETAR GEPS 0 0 0 
 MEPS20 0 0 0 
 MEPS4 — — —      

KDYS GEPS 0 0 0 
 MEPS20 6-9 4.2 0.190 
 MEPS4 6, 13-16, 21-23, 37-45, 63-68 35.8 0.145      

KLRF GEPS 0 0 0 
 MEPS20 6-9 4.2 0.127 
 MEPS4 7, 9, 11-16, 27-32 55.2 0.089      

KTIK GEPS 24-36 7.5 0.072 
 MEPS20 6-42, 60-66, 84-90 40.4 0.159 
 MEPS4 11-27, 35-51, 59-61, 65-72 67.2 0.137      

KXMR GEPS 0 0 0 
 MEPS20 0 0 0 
 MEPS4 35-39, 61-62 10.4 0.051      

LICZ GEPS 6-12 5 0.159 
 MEPS20 6-51, 69-75, 99, 141-144 89.5 0.112 
 MEPS4 — — —      

RKJK GEPS 0 0 0 
 MEPS20 0 0 0 
 MEPS4 6-7, 31-35 10.4 0.086      

RODN GEPS 0 0 0 
 MEPS20 0 0 0 
 MEPS4 0 0 0 
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4.2.1 Lightning Overforecasting 

Lightning reliability diagrams for most locations and forecast hours depict the 

BSS as less than 0 (worse than climatology) which indicates that lightning is 

overforecast.  Little Rock AFB GEPS forecast hour 24 (Figure 12) serves as an example 

of this overforecasting.   

 
 

 
Figure 12:  GEPS 24hr Lightning within 20km reliability diagram for Little Rock AFB from April-
October 2013 indicating that lightning is overforecast. 

 
 
The heaviest weighted probability bin, 0%, and the second heaviest weighted 

probability bin, 1-10%, closely match the observed frequency of occurrence while the 

remaining forecast probability bins are severely overforecast.  For example, probability 
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bin 51-60% has an observed frequency of 20% in only one out of the five forecasts 

verified.  Also, the forecast probabilities greater than 10% total 66 forecasts which is 

more than double the 30 forecasts in the 1-10% probability bin.  Since all of these 

observed frequencies comprised double the weight of the 1-10% probability, are well 

below the zero reliability line, and most observed frequencies do not deviate far from 

climatology, the observed frequency line falls outside the area of skill leading to a BSS of 

-0.55.  To demonstrate that lightning is overforecast for the majority of forecast hours, an 

average observed frequency value is calculated by totaling the observed frequencies for 

all forecast hours for each probability bin and dividing by the total number of forecasts at 

every forecast hour for each probability bin.  This calculation yields the following eleven 

averaged observed frequencies in order of probability bins from 0% to 91-100%, 

respectively; 0.57%, 2.39%, 4.46%, 10.21%, 13.15%, 17.94%, 21.65%, 27.20%, 39.13%, 

46.99% and 62.50%.  For example the 41-50% probability bin there is an observed 

frequency of occurrence of 17.94% which is too low by at least 23%.  The other forecast 

probability bins show that the averaged frequency of occurrence values are remarkably 

less, clearly indicating the overforecasting bias that persists for the entire forecast period.  

Upon review of the BSS trends for the GEPS forecast period at Little Rock AFB 

(Figure 12), it is evident that the majority of the overforecasting takes place during 

overnight hours.  These hours are typically not favorable for lightning as surface heating 

has subsided and the atmosphere has used up its available energy for convection.  A clear 

indication of less convection occurring overnight is the dip in uncertainty values from 

approximately 0.15 during the afternoon to approximately 0.08 overnight.   
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Figure 13:  GEPS Lightning within 20km BSS for all forecast hours at Little Rock AFB from April-
October 2013 indicating most scores near 0. 
 
 
 

Likewise, the same overforecasting bias is observed for the MEPS20 reliability 

plots for most locations and forecast hours; however, it is less pronounced.  Figure 14 for 

Tinker AFB forecast hour 21 illustrates this as more of the observed frequencies of 

occurrence are closer to the zero reliability line than the GEPS example allowing for  a 

weak positive BSS.  Calculating average observed frequencies as defined previously 

yields the following eleven averaged observed frequencies in order of probability bins 

from 0% to 91-100%, respectively; 3.69%, 11.06%, 14.07%, 20.46%, 19.50%, 33.95%, 
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32.73%, 40.54%, 42.03%, 51.43% and 100%.  These values clearly indicate an 

overforecasting bias; however, this bias is less severe than the GEPS example.   

 
 

 
Figure 14:  MEPS20 21hr Lightning within 20km reliability diagram for Tinker AFB from April-
October 2013 indicating that lightning is overforecast. 
 
 
 
Considering the BSS for the forecast period (Figure 15), it is evident that fewer hours are 

below 0 than in the GEPS example (Figure 12) and BSSs are higher when above 0.  

Similar to the GEPS example, sharp BSS dips can be seen when the MEPS20 forecasts 

lightning overnight when it typically does not occur. 
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Figure 15:  MEPS20 Lightning within 20km BSS for all forecast hours at Tinker AFB from April-
October 2013 indicating most scores above 0 during the day and below 0 at night. 
 
 
 

The MEPS4 is adversely impacted by the overforecasting bias more so than the 

MEPS20 for all locations.  Calculating an average observed frequency for Tinker AFB 

yields the following eleven averaged observed frequencies in order of probability bins 

from 0% to 91-100%, respectively; 1.66%, 3.78%, 11.74%, 17.25%, 25.61%, 35.38%, 

34.19%, 36.11%, 39.02%, 61.67% and 52.63%.  There are more hours of positive skill, as 

indicated in Table 6, as MEPS4 does not forecast high probabilities thus not populating 

many of the bins where overforecasting bias is most prevalent.  The BSS trend for the 
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entire forecast period (Figure 16) is similar to the other two EPS, better than climatology 

during the day and worse than climatology late at night when uncertainty values dip.  

 
 

 
Figure 16:  MEPS4 Lightning within 20km BSS for all forecast hours at Tinker AFB from April-
October 2013 indicating most scores above 0 during the day and below 0 at night. 
 
 
 

If the GEPS, MEPS20, and MEPS4 can be tuned to bring the observed 

frequencies closer to the zero reliability line, the EPS would become either skillful or 

more skillful correcting the overforecasting bias.  One way to potentially achieve this is 

by forecasting less probabilities of lightning occurrence during the late night hours when 

lightning rarely occurs   
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4.3 Winds 

4.3.1 Winds > 25kts 

The average positive skill in Table 7 shows that for winds > 25kts, increasing 

horizontal resolution equates to a more positive and better BSS regardless of location. 

 
 
Table 7:  Winds > 25kts Positive Skill Duration, Skillful Percentage of Forecast and Average Positive 
Skill.  Blanks indicate insufficient occurrence sample size. 

Site EPS Forecast Hours of Positive 
Skill 

Skillful % of 
Forecast 

Avg Positive 
Skill  

ETAR GEPS 6-228 95 0.083 
 MEPS20 — — — 
 MEPS4 — — —      

KDYS GEPS 6-126 52.5 0.086 
 MEPS20 6-144 100 0.206 
 MEPS4 6-72 100 0.267      

KLRF GEPS 6-18 7.5 0.020 
 MEPS20 6-9 4.2 0.235 
 MEPS4 — — —      

KTIK GEPS 6-132 55 0.108 
 MEPS20 6-144 100 0.224 
 MEPS4 6-8, 18-35, 42-58, 66-72 53.7 0.286      

KXMR GEPS 6-36, 72-132, 198-240 55 .068 
 MEPS20 — — — 
 MEPS4 — — —      

LICZ GEPS 6-18 7.5 0.039 
 MEPS20 — — — 
 MEPS4 — — —      

PABI GEPS 0 0 0 
 MEPS20 6-45, 60-72 34 0.024 
 MEPS4 6-72 100 0.421      

RKJK GEPS 6-144 60 0.169 
 MEPS20 6-18, 27-42, 51-57, 78-84 25.5 0.178 
 MEPS4 — — —      

RODN GEPS 6-240 100 0.132 
 MEPS20 6-144 100 0.298 
 MEPS4 6-72 100 0.527 
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This is especially true for areas where terrain effects play a large role in wind speed and 

direction.  For example, Fort Greely, AK (PABI) is located on the edge of the Tanana 

Valley and bordered by three extensive mountain ranges – the White Mountains to the 

North, the Yukon Tanana Uplands to the Northeast, and the Alaska Range to the South as 

shown in Figure 17.  These mountain ranges cause winds to funnel through mountain 

passes and valleys.  The coarser the resolution the harder it is for the EPS to resolve these 

terrain effects.  A comparison of AFWA’s three EPS is shown in Figure 18.  For the 

GEPS, all forecast hours have a negative BSS as indicated by the blue line with values 

ranging from approximately -0.32 to -0.12. 

 
 

 
Figure 17:  Map of one-degree resolution terrain around Fort Greely (red point).  Darker filled 
contours represent increasing terrain heights. 
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Scores begin to improve with the MEPS20 as 34% of the forecast times show a 

weak positive BSS as indicated by the red line.  These values oscillate around 0 from 

approximately -0.15 to 0.1 adding or detracting little from climatology.  For the MEPS4, 

the 4km resolution indicated by the black line substantially affects all forecast hours 

resulting in positive BSS and an average BSS increase of two orders of magnitude over 

MEPS20.  Values range from approximately 0.2 to 0.7 with substantial skill over 

climatology for all forecast hours. 

 
 

 
Figure 18:  Comparison of MEPS4, MEPS20 and GEPS BSS from Apr-Oct 13 for Fort Greely Winds 
> 25kts. MEPS4 is shown in black, MEPS20 is shown in red, and GEPS is shown in blue. 
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Reliability diagrams for all three of the EPS depict reasons for these results.  For 

all GEPS forecast hours, wind events are missed meaning that when the EPS forecasts a 

probability of 0% there are instances where winds greater than 25kts occur.   Overall, 18 

events are missed for each forecast hour when the average is taken for all forecast hours.  

Also, all the wind speeds are severely underforecast.  For example, the 30-hour forecast 

depicted in Figure 19 shows that the GEPS missed 11 events out of 180, producing a 6% 

observed frequency when the forecast probability is 0%. 

 
 

 
Figure 19:  GEPS 30hr Winds > 25kts reliability diagram for Fort Greely from April-October 2013 
indicating that occurrences are missed and wind speeds are underforecast. 
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This 0% probability bin falls on the skill line thus not adding any significant skill to the 

forecast.  The next probability bin, 1-10%, has 9 occurrences out of 11 forecasts leading 

to an 82% observed frequency.  Calculating the mean of the observed frequency for this 

particular bin and all forecast hours results in a 58.0% observed frequency.  The last bin, 

11-20%, has a 100% observed frequency as the two forecasts for this bin verified; 

however, the sample size is small, only adding a small positive contribution to the BSS. 

Due to missed events and severe underforecasting bias, the reliability for most forecast 

hours is relatively high while the resolution is relatively low because the forecast 

probabilities do not deviate much for climatology.  Consequently, the GEPS’s BSS stays 

negative for the entire forecast duration.  

The MEPS20 with its increased grid resolution shows some improvement by 

missing less events and possessing a less severe underforecasting bias as displayed in 

Figure 20.  When all forecast hours are averaged eight events are missed per forecast 

hour which is 10 less than the GEPS.  Forecast hour 21, as shown in Figure 20, confirms 

this result with five events missed out of 173 producing a 2.8% observed frequency when 

the forecast probability is 0%.  Also, the 1-10% probability bin contains only eight 

occurrences out of 15 forecasts thus the observed frequency is 53.3%, 5% less than the 

GEPS example.  The mean for all forecast hours for this bin results in a 42.8% observed 

frequency, approximately 13% less than the GEPS.  The next four probability bins where 

probabilities exist are underforecast but show skill and the relative sample sizes range 

from one in the 31-40% bin, two in both the 11-20% and 41-50% bins, and three in the 

21-30% bin.  This is roughly half the size of the 1-10% bin compensating for some of the 

skill lost by that bin’s contribution.  The continued but less drastic trend of missing 
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events and underforecasting the wind speed produces a better reliability while more 

forecast samples that verify away from climatology produce an increased resolution.  

However, the MEPS20 resolution does not increase enough to overcome the 

underforecasting bias.  This is why the MEPS20 performs better than the GEPS but does 

not have a BSS that deviates far from 0.   

 
 

 
Figure 20:  MEPS20 21hr Winds > 25kts reliability diagram for Fort Greely from April-October 
2013 indicating that occurrences are missed and wind speeds are underforecast. 

 
 
 
Considering the increased grid resolution of MEPS4, it is noted that this ensemble 

rarely misses any events, as the average misses for all the forecast hours is 1.2 per 
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forecast hour.  Also, winds are underforecast but less severely than the other two EPS.  

For the 1-10% bin, the average observed frequency is 14.8% which is 43.2% less than 

GEPS and 28% less than MEPS20.  Also, the average observed frequency is only 5% 

over its bin probability max resulting in only a slight underforecasting bias.  Figure 21 

provides an illustration of these trends for forecast hour 9.  In this example no events are 

missed.  For the second heaviest weighted bin, 1-10%, only three out of the 20 forecasts 

verified thus the observed frequency is 15% as depicted in Figure 21.   

 
 

 
Figure 21:  MEPS4 9hr Winds > 25kts reliability diagram for Fort Greely from April-October 2013 
indicating that occurrences are not missed and wind speeds are only slightly underforecast. 
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Also, bins that previously did not have any samples are now populated and verify 

providing forecasts that strongly deviate from climatology.  This allows for increased 

resolution while the reliability is fairly low due to less of an underforecasting bias.  

Although the other bin forecast sample sizes are small, all with only two or three 

forecasts, they total 23.  This is larger than the 1-10% bin adding an appreciable amount 

of skill.  Due to these factors, MEPS4 produces all positive BSSs.    

4.3.2 Winds > 35kts 

Table 8 details the results for winds > 35kts.  Only three out of the ten sites had 

enough occurrences to evaluate and two of the sites, Dyess and Kadena AB, did not have 

enough hourly occurrences to evaluate MEPS4.   The average positive skill shows that 

for winds > 35kts, increasing horizontal resolution equates to a more positive and better 

BSS regardless of location, as is the case for winds > 25kts. 

 
 

Table 8:  Winds > 35kts Positive Skill Duration, Skillful Percentage of Forecast and Average Positive 
Skill.  Blanks indicate insufficient occurrence sample size. 

Site EPS Forecast Hours of Positive 
Skill 

Skillful % of 
Forecast 

Avg Positive 
Skill  

KDYS GEPS 6-18 7.5 0.115 
 MEPS20 6-72 50 0.037 
 MEPS4 — — —      

PABI GEPS 0 0 0 
 MEPS20 0 0 0 
 MEPS4 6-72 100 0.255      

RODN GEPS 6-204 85 0.078 
 MEPS20 6-144 100 0.165 
 MEPS4 — — — 

 
 
 
The only exception is the results for Dyess AFB (KDYS).  Because the GEPS was only 

skillful for forecasts at 6, 12 and 18 hours, the average is based on only three numbers 
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and results in a higher average than the MEPS20.  The MEPS20 is a skillful forecast out 

to 72 hours; however, BSSs are close to 0 thus adding very little skill over climatology. 

None of the sites tested have a large enough occurrence sample size to obtain useful 

results for all three EPS.  Since Fort Greely (PABI) winds > 25kts have already been 

investigated it seems appropriate to assess an alternate site Kadena AB (RODN).  

Looking at the reliability diagrams for GEPS and MEPS20 and all the forecast hours 

there are some similarities to the Fort Greely winds > 25kts results.  Figure 22 for 

forecast hour 48 demonstrates missing events and underforecasting. 

 
 

 
Figure 22:  GEPS 48hr Winds > 35kts reliability diagram for Kadena AB from April-October 2013 
indicating that occurrences are missed and wind speeds are underforecast. 
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For GEPS, averaging all missed events for all the forecast hours results in six 

events missed per forecast hour.  Calculating an average of forecast hour observed 

frequencies for the 0% probability bin results in 4.3%.  Also, events in other probability 

bins are slightly underforecast for most forecast hours.  The main difference between this 

example (Figure 22) and the > 25kts winds investigated at Fort Greely (Figure 19) is that 

the climatologically probability for winds > 35kts at Kadena AB is substantially lower, 

less than 5% for all forecast hours.  Consequently, the 1-10% probability bin falls into the 

area of skill.  With this trend present in most forecast hours, the reliability values in 

Figure 23 will still be relatively high, however, enough events are forecasted from the 

low climatology values and verify to produce a relatively high resolution value leading to 

a positive BSS for 204 hours, 85% of the forecast duration.  
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Figure 23:  GEPS Winds > 35kts BSS for all forecast hours at Kadena AB from April-October 2013 
indicating a positive BSS for most forecast hours. 
 
 
 

With increased resolution, MEPS20 misses fewer events with an average of 4.7 

misses per forecast hour.  Also, the underforecasting is less prevalent in the second 

heaviest weighted bin with an average observed frequency of 10.8%.  This forces the 

reliability to a lower value while resolution increases slightly with more forecasts away 

from climatology verifying, thus the MEPS20’s BSS is higher for the majority of the 

forecast duration.  Figure 24 illustrates the MEPS20’s BSS, reliability and resolution to 

allow for visual comparison to previously mentioned GEPS results.   
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Figure 24:  MEPS20 Winds > 35kts BSS for all forecast hours at Kadena AB from April-October 
2013 indicating a positive BSS for most forecast hours. 
 

4.4 Precipitation 

4.4.1 Precipitation > 0.1in and > 0.05in in 6 hours 

Similar to the wind results, the average positive skill detailed in Table 9 indicates 

that for all three EPS, increasing horizontal resolution yields a more positive and better 

BSS for six out of the eight sites.  Also, for six out of the eight sites there is an increase in 

the number of forecast hours of positive BSS duration with increasing resolution from 

GEPS down to MEPS4. 

 



 

56 

Table 9:  Precipitation Positive Skill Duration, Skillful Percentage of Forecast and Average Positive 
Skill.  Blanks indicate insufficient occurrence sample size. 

Site EPS Forecast Hours of Positive 
Skill 

Skillful % of 
Forecast 

Avg Positive 
Skill  

ETAR GEPS 6-234 95 0.145 
 MEPS20 6-144 100 0.170 
 MEPS4 6-72 100 0.346      

KDYS GEPS 6-204 52.5 0.089 
 MEPS20 6-114 77.3 0.170 
 MEPS4 6-72 100 0.250      

KLRF GEPS 6-216 90 0.139 
 MEPS20 6-126 85.8 0.154 
 MEPS4 6-72 100 0.346      

KTIK GEPS 6-240 100 0.164 
 MEPS20 6-144 100 0.173 
 MEPS4 6-72 100 0.346      

KXMR GEPS 0 0 0 
 MEPS20 36 23.4 0.091 
 MEPS4 10-29, 33-50, 65-72 56.7 0.121      

PABI GEPS 6-162 67.5 0.044 
 MEPS20 6 2.1 0.018 
 MEPS4 6-55, 63-72 79.1 0.123      

RKJK GEPS 6-222 92.5 0.157 
 MEPS20 6-111 76.6 0.230 
 MEPS4 6-72 100 0.374      

RODN GEPS 6-180 75 0.199 
 MEPS20 6-123 85.1 0.110 
 MEPS4 6-72 100 0.209 

 
 
 

These increased BSS forecast durations and average values can be attributed to 

two factors.  First, precipitation processes predominately occur at the microscale and 

mesoscale level, thus precipitation is better resolved by higher resolution models.  

Parameterization schemes are employed to mitigate a model’s lack of resolution but these 

schemes suffer from their own pitfalls.  The GEPS will explicitly miss many of these 

smaller scale processes only capturing larger synoptic features like frontal boundaries 
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while relying on inherent schemes to compensate for smaller scale processes.  MEPS20’s 

20km resolution will pick up on many of the mesoscale processes like dry lines, squall 

lines and others while the MEPS4’s 4km resolution will resolve most mesoscale 

processes and some microscale processes without parameterization.  The second reason 

for the increased positive BSS durations and values is that the GEPS and MEPS20 create 

probabilities for precipitation > 0.1in in 6 hours while the MEPS4 generates probabilities 

for precipitation > 0.05in in 6 hours.  This makes it slightly easier for the MEPS4 

precipitation probabilities to verify leading to a longer positive BSS duration and higher 

average positive BSS as detailed in Table 9.  For all three EPS, precipitation is the easiest 

event to forecast and verify.  While both precipitation forecast thresholds are more than a 

typical brief rain shower, the amounts are not considered significant.  Also, both the 

MEPS20 and MEPS4 use 6 hours leading up to the forecast hour to verify the events 

while the other forecast parameters utilize only 1 or 3 hours, depending on the EPS.  

4.4.2 Synoptic Forcing vs. Convective Heating  

 Based on the data represented in Table 9 it is evident that all three EPS perform 

better at resolving precipitation for locations that experience rainshowers and 

thunderstorms predominately associated with frontal lift versus rainshowers and 

thunderstorms that typically develop due to daytime heating and small scale lifting 

mechanisms.  At Cape Canaveral AFS (KXMR) the majority of rain showers and 

thunderstorms develop due to lift associated with daytime convective heating and/or daily 

sea breezes.  Tables 7 and 10 exhibit that each EPS does worse than the respective 

climatology for both lightning and precipitation occurrence.  The poor BSS for lightning 

is due to the high lightning climatology percentages coupled with all three EPS 
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overforecasting lightning as previously mentioned in the lightning results section.  

Similarly, precipitation is overforecast for the majority of the forecast hours yielding a 

negative BSS in all EPS.  Figure 25, for forecast hour 30, highlights an example of this 

trend for the GEPS. 

 
 

 
Figure 25:  GEPS 30hr Precipitation > 0.1in reliability diagram for Cape Canaveral AFS from April-
October 2013 indicating that precipitation is overforecast. 
 
 
 
Different from the other parameters discussed thus far, the precipitation forecast 

contributions are not as heavily weighted towards the 0% and 1-10% bins.  Forecasts are 

fairly evenly distributed into other higher probability forecast bins.  If forecasts in these 
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higher probability bins verify more frequently, the resolution would increase; however, 

most events do not verify thus the resolution is relatively low since most observed 

frequencies are near climatology. This overforecasting bias also causes the reliability to 

increase due to the observed frequency moving further away from the zero reliability line 

as the forecast probabilities increase.  The resulting high reliability and low resolution 

cause the BSS to become negative for virtually all the forecast hours as indicated in 

Figure 26.  

 
 

 
Figure 26:  GEPS Precipitation > 0.1in BSS for all forecast hours at Cape Canaveral AFS from 
April-October 2013 indicating a negative BSS for most forecast hours. 
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MEPS20 suffers from a similar overforecast bias, but not as prevalent in all the 

forecast hours.  Fewer events are forecast in the higher probability bins thus alleviating 

some of the contributions from these bins as shown in forecast hour 75, Figure 27. 

 
 

 
Figure 27:  MEPS20 75hr Precipitation > 0.1in reliability diagram for Cape Canaveral AFS from 
April-October 2013 indicating that precipitation is overforecast. 

 
 
 

Here, the 0% probability bin provides the largest contribution to the BSS and its 

components.  The second largest contribution is from the 11-20% bin and falls close to 

the zero reliability line.  Other significant weighted bins fall near the climatology line 

providing little to no resolution.  Overall, compared to the GEPS, the reliability decreases 
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and the resolution is similar for most hours as indicated in Figure 28.  This translates to 

the first 36 forecast hours possessing a positive BSS duration using the previously 

discussed technique to smooth the trend.  

 
 

 
Figure 28:  MEPS20  Precipitation > 0.1in BSS for all forecast hours at Cape Canaveral AFS from 
April-October 2013 indicating a positive BSS for the initial portion of the forecast. 
 
 
 
For MEPS4, no biases are noted when reviewing the reliability diagrams.  For most 

forecast hours the majority of the probability bins closely parallel the zero reliability line 

as shown in Figure 29 for forecast hour 17. This trend allows the EPS to remain positive 
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for the majority (56.7%) of the forecast hours with a better average positive skill than the 

other two EPS tested. 

 
 

 
Figure 29:  MEPS4 17hr Precipitation > 0.05in reliability diagram for Cape Canaveral AFS from 
April-October 2013 indicating that probabilities closely match the zero reliability line. 
 
 
 

Kunsan AB located on the western side of the South Korean peninsula, bordered 

by the West Sea, experiences precipitation events predominately from migratory low 

pressure systems that traverse to the north over Manchuria or across the West Sea. 

Because these events are predominately frontal in nature, the GEPS is able to resolve a 

considerable amount of the precipitation correctly producing positive skill 92.5% of the 
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time.  MEPS20 and MEPS4 still produce a better average positive skill due to increased 

resolution but are fairly comparable showing that all three EPS resolve frontal 

precipitation well as exhibited in Figure 30.  Reliability diagrams indicate no significant 

biases for the three EPS at this location.   

 
 

 
Figure 30:  Comparison of MEPS4, MEPS20 and GEPS BSS for Kunsan AB Precipitation. MEPS4 
shown in black, MEPS20 is shown in red and GEPS is shown in blue. 

 
 
 
Based on results from Cape Canaveral AFS it is apparent that the 

parameterization schemes in the GEPS and MEP20 struggle with resolving precipitation 
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from daytime, convective heating.  Frontal precipitation, on the other hand, at Kunsan 

AB is resolved well by the parameterization schemes used in all three EPS.  

4.5 Tropical Cyclone EPS Skill   

During October 2013, three tropical cyclones passed within approximately 222km 

of Kadena AB, as shown in Figure 31, providing the opportunity to investigate EPS 

performance for winds and precipitation during tropical cyclone impacts.   

 
 

 
Figure 31:  Graphic of tropical cyclones 22W, 23W and 26W passing within 222km of Kadena AB 
during the month of October. 
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Sample sizes for tropical cyclone events are small allowing for any bin to considerably 

affect the BSS.  Also, due to these small samples, only two parameters possess a 

sufficient sample size to compare all three EPS - winds > 25kt, precipitation > 0.1in in 6 

hours for GEPS and MEPS20, and precipitation > 0.05in in 6 hours for MEPS4.   

4.5.1 Winds > 25kts 

A comparison of all three EPS is provided in Figure 32. For MEPS4, it is evident 

that the BSS remains highly positive for the entire forecast duration with the exception of 

the two outliers at hours 29 and 53.  Without these outliers, values range from 

approximately 0.5 to 0.9. 

 

 
Figure 32:  Comparison of MEPS4, MEPS20 and GEPS BSS for Kadena AB Winds > 25kts. MEPS4 
is shown in black, MEPS20 is shown in red, and GEPS is shown in blue. 
 



 

66 

MEPS20’s BSS trends downward and stays positive during the forecast with 

values ranging from approximately 0.22 to 0.62.   Lastly, GEPS’s BSS trends downward 

as well remaining positive for the forecast duration with values ranging from 

approximately 0.1 to 0.53.  Upon review of the wind test data for the three tropical 

cyclone passes, it is evident that horizontal resolution differences play a significant role 

in increasing the BSS for winds and that all three EPS perform well.      

4.5.2 Precipitation > 0.1in and > 0.05in in 6 hours 

A comparison of all three EPS is provided in Figure 33.   

 
 

 
Figure 33:  Comparison of MEPS4, MEPS20 and GEPS BSS for Kadena AB Precipitation. MEPS4 is 
shown in black, MEPS20 is shown in red, and GEPS is shown in blue. 
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Unlike the whole sample results for Kadena AB showing a clear increase in 

average positive skill with increasing resolution for winds, no noticeable changes in skill 

are noted in Figure 33 for precipitation.  In fact, the GEPS performed slightly better than 

both regional EPS.  It is possible that both of these EPS, while able to resolve typically 

small-scale convection at Kadena AB during the year, they poorly resolve large-scale 

forcing from tropical cyclones.  
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IV. Conclusion 

5.1 Summary of Results 

Ensemble modeling has begun to revolutionize weather forecasting.  By 

characterizing uncertainty through a group of ensemble members, the probability of an 

event occurring is generated providing users an understanding as to how well models are 

in agreement when forecasting a particular parameter.  Probabilities of parameter 

occurrence provide more information than a simple “yes” or “no” deterministic result.  

While more descriptive than a deterministic model, ensembles still possess pitfalls as the 

atmosphere is not absolutely resolved regardless of model configuration.     

This study exploits how each of AFWA’s EPS - GEPS, MEPS20 and MEPS4 - 

performs over one convective season ranging from April to October 2013.  For the six 

parameters tested, reliability diagrams and BSS time series were constructed.  Two 

parameters, 50kts winds and precipitation > 2in in 12 hours, proved too infrequent of an 

event to test, while others generated useful metrics as detailed in Chapter 4. 

  Lightning for GEPS, MEPS20 and MEPS4 for all locations and most forecast 

hours suffered from substantial overforecasting bias leading to poor reliability and 

resolution outcomes which yielded marginally positive BSSs during the day and negative 

BSSs at night.   

For both winds > 25kts and > 35kts, horizontal resolution plays a significant role 

in resolving terrain effects which helps resolve wind speed.  MEPS4 was found to 

provide the best average BSS for winds > 25kts and > 35kts for all locations and the best 

skillful percent of the forecast for 4 of the 5 sites where each EPS had a sufficient sample 
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of forecasts.  Where MEPS4 sample sizes are insufficient, MEPS20 outperformed the 

GEPS. 

Precipitation is also better resolved as horizontal resolution increases with a 

smaller grid size.  The MEPS4’s superior performance in forecasting precipitation is most 

likely due to its explicit resolution outperforming the cumulus parameterization schemes 

used to resolve convection in the GEPS and MEPS20.  Likewise, the MEPS20 performs 

slightly better than the GEPS due to its better explicit resolution of mesoscale convective 

processes greater that or equal to 20km in horizontal extent.  BSS performance 

differences were noted in Chapter 4 when investigating the results for Cape Canaveral 

AFS and Kunsan AB.  At Cape Canaveral the majority of convection and resulting 

precipitation is generated by localized heating and small scale circulations like land and 

sea breezes.  These results show that the cumulus parameterizations in both the GEPS 

and MEPS20 fail to resolve the small scale convection sufficiently enough to provide 

skillful results, while the explicit resolution of convection in MEPS4 is slightly better 

with 7 forecast hours of positive skill.  At Kunsan AB much of the precipitation that 

occurs is a result of large scale lift from transient fronts.  This mechanism for 

precipitation is resolved well by the cumulus parameterizations schemes in the GEPS and 

MEPS20 as well as the explicit resolution in MEPS4.  Based on these differences it is 

hypothesized that until model grid spacing is reduced to the actual size of most 

convective precipitation cells, small scale events like the ones observed at Cape 

Canaveral will continue to be poorly resolved at larger grid scales while large scale 

events like frontal induced precipitation are resolved well by cumulus parameterization 

and explicit resolution.  
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For the three tropical cyclones that passed near Kadena AB, wind results 

continued to show that increased model resolution leads to a better forecast; however, 

tropical precipitation is resolved slightly better by the GEPS.  This is potentially due to 

both regional EPS, MEPS20 and MEPS4, struggling to resolve precipitation processes 

associated with large scale forcing from tropical cyclones. 

Lastly, it is worth noting that a diurnal trend in the BSS was evident in many of 

the figures presented.  GEPS showed the strongest diurnal trend for the parameters tested 

with MEPS20 showing less of a trend and MEPS4 showing the least.  One potential 

reason for the more obvious GEPS diurnal trending lies in the 6 hour forecast probability 

interval.  For example, if thunderstorms rarely occur at a location overnight, GEPS may 

have a 2% probability for lightning occurrence for each hour.  Combining those 

probabilities to create a 6 hour forecast probability equates to a much higher probability 

for an event rarely occurring, causing poor overnight BSSs.  The probabilities for each of 

the MEPS20 and MEPS4 forecast intervals, 3 hours and 1 hour respectively are overall 

less, thus the decrease in BSS in either case is less pronounced or nonexistent.   

5.2 Recommendations and Future Research 

Since this research only tested one convective season, six months over spring and 

summer, it would be beneficial to bolster the forecast sample size to include multiple 

years and all seasons.  Doing so could further validate these findings along with the 

potential to discover other EPS trends.  With AFWA currently producing PEP bulletins 

for roughly 10,000 locations worldwide, these EPS probabilities are not achieved due to 

data storage limitations (Kuchera, 2013).  Future validation of point locations using 
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AFWA’s EPS will require that locations be selected and a daily routine of archiving this 

data be implemented.     

Because many of the meteorological events that the Air Force forecasts do not 

occur often, it should be noted that the majority of the results showed more forecast 

samples in the smaller forecast probability bins e.g. 1-10% and 10-20%.  To provide 

further detail on EPS performance it would be beneficial to create smaller bin widths for 

these lower probability bins.  

Because ensemble modeling is becoming more prevalent in the civilian sector and 

DoD, EPS are being updated at a higher cadence as discoveries are being realized relative 

to ensemble performance.  In just seven months, the 10 ensemble member MEPS suite 

changed member parameters four times as noted in Appendix D.  To truly understand 

how well these four different suites perform, each would need to be tested over a longer 

time period than existed during this study.  This could result in a greater understanding of 

which ensemble model suite performs best for different regions of the world.   
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Appendix A: AFWA Lightning Algorithms 

The basic regression equation is applied to MEPS20 when convective available 

potential energy (CAPE) and accumulated precipitation (AP) are greater than 0. 

12 𝐿𝑇𝐺 𝑝𝑟𝑜𝑏 = 0.13 × 𝑙𝑜𝑔[(𝐶𝐴𝑃𝐸 × 𝐴𝑃) + 0.7)] + 0.05  

AP is adjusted using precipitable water (PW) values because models often produce 

showery precipitation that does not use the instability in very moist environments. 

13 𝐴𝑃 = 𝐴𝑃 − �
𝑃𝑊

1000
�  

If AP is less than 0.01, then 

14 
𝐿𝑇𝐺 𝑝𝑟𝑜𝑏 = 0.025 ×  𝑙𝑜𝑔 ��

𝐶𝐴𝑃𝐸
𝐶𝐼𝑁 + 100

� + 0.31� + 0.03  

If there is no CAPE but the model atmosphere is on the verge of becoming unstable, 

lightning can occur. This typically happens when heavy precipitation stabilizes the model 

atmosphere. Therefore, to be unstable there must be a positive lifted index (LI). 

15 𝐿𝐼 = 𝐿𝐼 + 4  

If the LI is less than 0, then the LI is set to 0. If the CAPE is less than 0, then 

16 𝐿𝑇𝐺 𝑝𝑟𝑜𝑏 = 0.2 ×  (LI ×  AP)0.5  

If the PW value is low, then graupel can not form, which starts the charging process thus 

the probability of lightning is reduced.  If PW is less than 20, 

17 𝐿𝑇𝐺 𝑝𝑟𝑜𝑏 = 𝐿𝑇𝐺 𝑝𝑟𝑜𝑏 ×  �
𝑃𝑊
20

�  

The regression equation can only be as skillful as 95% thus the probabilities that are 

above 95% are set to 95%.  
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For MEPS4, the cumulus parameterization is turned off and thunderstorms are resolved 

explicitly.  Petersen et al (2005) and McCaul et al (2009) showed that the incorporation 

of a graupel flux is a more accurate way to predict lightning.  Because of the 

computational expense involved in predicting graupel amounts, most of AFWA’s MEPS 

ensemble members do not predict graupel, but instead used total cloud ice. MEPS20 

convective parameterization schemes incorporate total ice content, however, the explicit 

method used by the MEPS4 does not, therefore the following equation is used to 

incorporate total cloud ice content in the MEPS4.   

18 𝐿𝑇𝐺 𝑝𝑟𝑜𝑏 = 0.076 × (𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑜𝑢𝑑 𝑖𝑐𝑒 − 7.5 )  
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Appendix B: Combined Region Lightning Probability 

To find the probability of lightning, P, in a combined region of n smaller regions, 

each with a probability of lightning, p, use: 

𝑃(𝑝,𝑛) =  �
𝑛!

𝑟! (𝑛 − 𝑟)!

𝑛

𝑟=1

𝑝𝑟(1 − 𝑝)(𝑛−𝑟) 

In this expression, the 𝑛!
𝑟!(𝑛−𝑟)!

 term is the number of combinations of n objects 

taken r at a time.  This term gives us the number of combinations of r out of n areas 

containing lightning.  The 𝑝𝑟(1 − 𝑝)(𝑛−𝑟) term gives the probability of occurrence of a 

particular combination, with 𝑝𝑟 the contribution to the probability of areas with lightning 

and (1 − 𝑝)(𝑛−𝑟) the contribution of areas without lightning.  The summation 

accumulates the probabilities of outcomes with 1, 2, ..., n areas having lightning. 

Examples: 

1.  PEP bulletin probability of 20% (p = 0.20) for two areas combined (n = 2): 

𝑃(0.20,2) = �
2!

𝑟! (2 − 𝑟)!
(0.20)𝑟

2

𝑟=1

(1 − 0.20)(2−𝑟) 

                    =
2!

1! (2 − 1)!
(0.20)1(1− 0.20)(2−1) +

2!
2! (2 − 2)!

(0.20)2(1 − 0.20)(2−2) 

= 2(0.20)(0.80) + 1(0.04)(1) 

= 0.36 

2.  PEP bulletin probability of 10% (p = 0.10) for eight areas combined (n = 8): 

𝑃(0.10,8) = �
8!

𝑟! (8 − 𝑟)!
(0.10)𝑟

8

𝑟=1

(1 − 0.10)(8−𝑟) 
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                    =
8!

1! (8 − 1)!
(0.10)1(1− 0.10)(8−1) + ⋯

+
8!

8! (8 − 8)!
(0.10)8(1 − 0.10)(8−8) 

= 8(0.10)(0.90)7 + ⋯+ 1(0.10)8(1) 

= 0.57 
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Appendix C: Acronym List 
 

AB – Air Base 

AFB – Air Force Base 

AFS – Air Force Station 

AFWA – Air Force Weather Agency 

AFW-WEBS – Air Force Weather Web Services  

ALADIN-LAEF - Aire Limitée Adaptation Dynamique Développement International-

Limited Area Ensemble Forecasting 

BS – Brier Score 

BSS – Brier Skill Score 

CMC – Canadian Meteorological Centre 

DoD – Department of Defense 

ECMWF – European Centre for Medium-Range Weather Forecasts 

EPS – Ensemble Prediction Center 

FNMOC – Fleet Numerical Meteorology and Oceanography Center  

GEFS – Global Ensemble Forecast System  

GFS – Global Forecast System 

GEM – Global Ensemble Model 

GEPS – Global Ensemble Prediction System 

MATLAB – Matrix Laboratory  

MEPS20 – 20km Mesoscale Ensemble Prediction System  

MEPS4 – 4km Mesoscale Ensemble Prediction System 

METAR – Aerodome Routine Meteorological Report 
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NAS – Naval Air Station 

NCEP – National Centers for Environmental Prediction 

NOGAPS – Navy Operational Global Atmospheric Prediction System 

NWP – Numerical Weather Prediction 

ORM – Operational Risk Management 

OWS – Operational Weather Squadron 

PDF – Probability Density Function 

PEP – Point Ensemble Probability 

SPECI – Aerodrome Special Meteorological Report 

UKMO – United Kingdom Met Office 

UM – Unified Model 

WRF – Weather Research and Forecasting 

WXG – Weather Group 
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Appendix D: AFWA MEPS Member Configuration 
 

The ensemble members for both MEPS20 and MEPS4 are listed below in Tables 

B1-B4.  Note that for MEPS4 the convective parameterization, C, is turned off as the 

model explicitly resolves convection. All WRF-NMM dynamics and physics options can 

be found in the User’s Guide for the NMM Core of the Weather Research and Forecast 

(WRF) Modeling System Version 3 Chapter 5. 

Table B1:  MEPS first configuration during research sample (Kuchera, 2013). 
 
M LIC LUT IC LBC SW LW LSM MP H CCN PBL SL C   
1 LIS n/a UM UM n/a n/a 2 4 n/a n/a 1 1 1 
2 LIS n/a GFS GFS n/a n/a 2 10 n/a n/a 8 2 2 
3 LIS n/a GEM GEM n/a n/a 2 16 n/a n/a 1 1 5 
4 LIS n/a GEM GEM n/a n/a 2 5 n/a n/a 8 1 1 
5 LIS n/a UM UM n/a n/a 2 16 n/a n/a 7 1 2 
6 LIS n/a GFS GFS n/a n/a 2 8 n/a n/a 7 1 5 
7 LIS n/a GEM GEM n/a n/a 2 10 n/a n/a 1 1 2 
8 LIS n/a GFS GFS n/a n/a 2 5 n/a n/a 1 1 6 
9 LIS n/a UM UM n/a n/a 2 8 n/a n/a 7 1 5 
10 LIS n/a GFS GFS n/a n/a 2 4 n/a n/a 7 1 6 

 
Table B2: MEPS second configuration during research sample (Kuchera, 2013). 

M LIC LUT IC LBC SW LW LSM MP H CCN PBL SL C   
1 LIS 10 UM UM 1 1 2 4 1 n/a 1 1 1 
2 LIS 2 GFS GFS 1 1 2 10 1 1E+9 8 2 2 
3 LIS 2 GEM GEM 1 1 2 16 0 1E+9 1 1 5 
4 LIS AFWA GEM GEM 1 1 2 5 n/a n/a 8 1 1 
5 LIS 5 UM UM 1 1 2 16 1 1E+8 7 1 2 
6 LIS 6 GFS GFS 1 1 2 8 n/a n/a 7 1 5 
7 LIS 7 GEM GEM 1 1 2 10 0 1E+8 1 1 2 
8 LIS 8 GFS GFS 1 1 2 5 n/a n/a 1 1 6 
9 LIS 8 UM UM 1 1 2 8 n/a n/a 7 1 5 
10 LIS 1 GFS GFS 1 1 2 4 n/a n/a 7 1 6 
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Table B3: MEPS third configuration during research sample (Kuchera, 2013). 

M LIC LUT IC LBC SW LW LSM MP H CCN PBL SL C   
1 LIS 10 UM UM 1 1 2 16 1 5E+8 1 1 2 
2 LIS 2 GFS GFS 1 1 2 10 1 1E+8 8 2 6 
3 LIS 2 GEM GEM 5 5 2 16 0 1E+9 1 1 14 
4 LIS AFWA GEM GEM 5 5 2 10 1 1E+9 8 1 2 
5 LIS 5 UM UM 3 3 2 8 n/a n/a 7 1 14 
6 LIS 6 GFS GFS 1 1 2 16 1 1E+8 7 1 6 
7 LIS 7 GEM GEM 1 1 2 8 n/a n/a 1 1 2 
8 LIS 8 GFS GFS 3 3 2 10 0 1E+8 1 1 6 
9 LIS 8 UM UM 3 3 2 16 0 5E+8 7 1 14 
10 LIS 1 GFS GFS 5 5 2 8 n/a n/a 7 1 6 

 

Table B4: MEPS fourth configuration during research sample (Kuchera, 2013). 

M LIC LUT IC LBC SW LW LSM MP H CCN PBL SL C   
1 LIS 10 UM UM 1 1 2 16 1 5E+8 1 1 2 
2 LIS 2 GFS GFS 1 1 2 10 1 1E+8 8 1 6 
3 LIS 2 GEM GEM 5 5 2 16 0 1E+9 1 1 14 
4 UM AFWA GEM GEM 5 5 2 10 1 1E+9 8 1 2 
5 UM 5 UM UM 3 3 2 8 n/a n/a 7 1 6 
6 LIS 6 GFS GFS 1 1 7 16 1 1E+8 7 1 6 
7 UM 7 GEM GEM 1 1 7 8 n/a n/a 1 1 14 
8 LIS 8 GFS GFS 3 3 7 10 0 1E+8 1 1 2 
9 UM 8 UM UM 3 3 7 16 0 5E+8 7 1 2 
10 UM 1 GFS GFS 5 5 7 8 n/a n/a 7 1 14 
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